

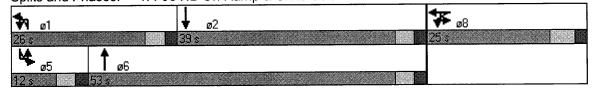
	ၨ	-+	•	F	✓	4	4	₽	4	†	<i>></i>	L
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations						4T >			ă	ተተጉ		
	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)						4.0			4.0	4.0		
Lane Util. Factor						0.95			1.00	0.91		
Frt						0.95			1.00	1.00		
Flt Protected						0.98			0.95	1.00		
Satd. Flow (prot)						3283			1770	5074		
Flt Permitted						0.98			0.95 1770	1.00 5074		
Satd. Flow (perm)						3283	-		313		23	E
Volume (vph)	0	0	0	1	8 0.92	5 0.92	7 0.92	4 0.92	0.92	1597 0.92	0.92	5 0.92
Peak-hour factor, PHF	0.92	0.92 0	0.92 0	0.92 1	0.92 9	0.92 5	0.92	0.92	340	1736	25	5
Adj. Flow (vph) RTOR Reduction (vph)	0	0	0	0	0	8	0	0	0	1700	0	0
Lane Group Flow (vph)	0	0	0	0	0	15	0	0	344	1760	0	0
Turn Type	U	J	<u> </u>	Split	Split			Prot	Prot			Prot
Protected Phases				8	8	8		1 1	1 1	6		5
Permitted Phases				J	-	_				•		
Actuated Green, G (s)						2.8			23.5	68.0		
Effective Green, g (s)						4.8			24.5	69.0		
Actuated g/C Ratio						0.05			0.27	0.77		
Clearance Time (s)						6.0		***************************************	5.0	5.0		
Vehicle Extension (s)						3.0			3.0	3.0		
Lane Grp Cap (vph)						175			482	3890		
v/s Ratio Prot						c0.00			c0.19	0.35		
v/s Ratio Perm												
v/c Ratio						0.09			0.71	0.45		
Uniform Delay, d1						40.5			29.6	3.8 1.52		
Progression Factor						1.00 0.2			0. 7 9 3.7	0.3		
Incremental Delay, d2						40.7			27.2	6.0		
Delay (s) Level of Service						70.7 D			Z1.Z	0.0 A		
Approach Delay (s)		0.0				40.7			•	9.5		
Approach LOS		A				D				Α		
Intersection Summary HCM Average Control De	olov.		11.9	L	CMLo	el of Se	rvice		В			
HCM Volume to Capacity			0.58	1 1	CIVI LEV	rei oi oe	I VICE		U			
Actuated Cycle Length (s			90.0	S	um of l	ost time	(s)		12.0			
Intersection Capacity Util			61.7%			el of Ser			В			
Analysis Period (min)												
			15									

	-	↓	4
Movement	SBL	SBT	SBR
Lane Configurations	Ä	ተ ቀጉ	
Ideal Flow (vphpl)	1900	1900	1900
Total Lost time (s)	4.0	4.0	
Lane Util. Factor	1.00	0.91	
Frt	1.00	0.99	
Flt Protected	0.95	1.00	
Satd. Flow (prot)	1770	5014	
FIt Permitted	0.95	1.00	
Satd. Flow (perm)	1770	5014	
Volume (vph)	17	1280	132
Peak-hour factor, PHF	0.92	0.92	0.92
Adj. Flow (vph)	18	1391	143
RTOR Reduction (vph)	0	10	0
Lane Group Flow (vph)	23	1524	0
Turn Type	Prot		
Protected Phases	5	2	
Permitted Phases	_		
Actuated Green, G (s)	3.2	47.7	
Effective Green, g (s)	4.2	48.7	
Actuated g/C Ratio	0.05	0.54	
Clearance Time (s)	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	
Lane Grp Cap (vph)	83	2713	
v/s Ratio Prot	0.01	c0.30	
v/s Ratio Perm	0.00	0.50	
v/c Ratio	0.28	0.56	
Uniform Delay, d1	41.4	13.6	
Progression Factor	1.00	1.00	
Incremental Delay, d2	1.8	0.8	
Delay (s)	43.3	14.5 B	
Level of Service	D	14.9	
Approach Delay (s)		14.9 B	
Approach LOS		В	
Intersection Summary			

	۶	→	•	F	<	←	•	₽	•	†	<i>></i>	Ŀ
Lane Group	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations						414			Ä	ተ ተጉ		***************************************
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0		0		0		152		0	
Storage Lanes	0		0		0		0		1		0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50	50		50	50	50		50
Trailing Detector (ft)				0	0	0		0	0	0		0
Turning Speed (mph)	15		9	9	15		9	9	15		9	9
Right Turn on Red			Yes				Yes				Yes	
Link Speed (mph)		30				30				30		
Link Distance (ft)		369				514				1103		
Travel Time (s)		8.4				11.7	_			25.1		_
Volume (vph)	0	0	0	1	8	_ 5	7	4	313	1597	23	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Turn Type				Split	Split			Prot	Prot	^		Prot
Protected Phases				8	8	8		1	1	6		5
Permitted Phases				_	_	•				^		r
Detector Phases				8	8	8		1	1	6		5
Minimum Initial (s)				7.0	7.0	7.0		4.6	4.6	34.0		4.6
Minimum Split (s)				13.0	13.0	13.0	0.0	10.0	10.0	53.0	0.0	10.0
Total Split (s)	0.0	0.0	0.0	25.0	25.0	25.0	0.0	26.0	26.0	53.0	0.0	12.0
Total Split (%)	0.0%	0.0%	0.0%		27.8%		0.0%		28.9%		0.0%	13.3%
Yellow Time (s)				4.0	4.0	4.0		3.0 2.0	3.0 2.0	3.0 2.0		3.0 2.0
All-Red Time (s)				2.0	2.0	2.0						Lead
Lead/Lag								Lead Yes	Lead Yes	Lag Yes		Yes
Lead-Lag Optimize?				NI	Mana	Mana				C-Min		None
Recall Mode				None	None	None		None	None	O-MIN		NOHE
Intersection Summary												
	Other											

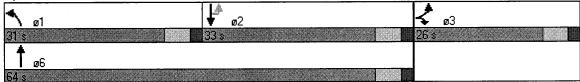
Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 81 (90%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Splits and Phases: 1: I-95 NB On Ramp & Chris Columbus Blvd.

	-	¥	∢
Lane Group	SBL	SBT	SBR
Lane Configurations	ă	ተ ቀሱ	
Ideal Flow (vphpl)	1900	1900	1900
Storage Length (ft)	320		0
Storage Lanes	1		0
Total Lost Time (s)	4.0	4.0	4.0
Leading Detector (ft)	50	50	
Trailing Detector (ft)	0	0	
Turning Speed (mph)	15		9
Right Turn on Red			Yes
Link Speed (mph)		30	
Link Distance (ft)		527	
Travel Time (s)		12.0	
Volume (vph)	17	1280	132
Peak Hour Factor	0.92	0.92	0.92
Turn Type	Prot		
Protected Phases	5	2	
Permitted Phases			
Detector Phases	5	2	
Minimum Initial (s)	4.6	34.0	
Minimum Split (s)	10.0	39.0	
Total Split (s)	12.0	39.0	0.0
Total Split (%)		43.3%	0.0%
Yellow Time (s)	3.0	3.0	
All-Red Time (s)	2.0	2.0	
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	
Recall Mode	None	C-Min	
Intersection Summary			

	→	•	4	†	L	↓	1	
Lane Group	EBL	EBR	NBL	NBT	SBU	SBT	SBR	
Lane Configurations	ሻሻ	77	ነኘ	ተተተ	a	ተተተ		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0	150		150		0	
Storage Lanes	2	2	1		1		0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	50	50	50		
Trailing Detector (ft)	0	0	0	0	0	0		
Turning Speed (mph)	15	9	15		9		9	
Right Turn on Red		Yes					Yes	
Link Speed (mph)	30			30		30		Fig. 1977
Link Distance (ft)	589			1367		1103		
Travel Time (s)	13.4			31.1		25.1		
Volume (vph)	139	1101	417	1772	10	1173	110	
Peak Hour Factor	0.81	0.92	0.80	0.76	0.92	0.92	0.77	
Heavy Vehicles (%)	2%	2%	4%	4%	3%	3%	3%	
Turn Type		Prot	Prot		Perm	_		
Protected Phases	3	3	1	6		2		
Permitted Phases	-	_			2			
Detector Phases	3	3	1	6	2	2		
Minimum Initial (s)	20.0	20.0	25.0	27.0	27.0	27.0		
Minimum Split (s)	26.0	26.0	31.0	64.0	33.0	33.0		
Total Split (s)	26.0	26.0	31.0	64.0	33.0	33.0	0.0	
Total Split (%)	28.9%				36.7%		0.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0		
Lead/Lag			Lead Yes		Lag Yes	Lag Yes		
Lead-Lag Optimize?	None	None		C May	C-Max			
Recall Mode	None	None	none	C-IVIAX	U-IVIAX	C-IVIAX		
Intersection Summary								
Area Type:	Other							
Cycle Length: 90							***************************************	
Actuated Cycle Length	i: 90							
Offset: 6.3 (7%), Refer	renced to	phase	2:SBTU	and 6:I	NBT, St	art of Gr	een	
Natural Cycle: 90								
Control Type: Actuated	d-Coordin	ated						
.				D	0.01.		, 5	
Splits and Phases: 2	2: I-676 C	n & I-6	76/95 O	tt Ramp	& Chri	s Colum	pus Blvd	<u>· </u>

	•	•	1	†	L	ţ	4		
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR		
Lane Configurations	ኻኻ	77	ሻ	ተተተ	Ð	ተተተ			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0			
Lane Util, Factor	0.97	0.88	1.00	0.91	1.00	0.91			
Frt	1.00	0.85	1.00	1.00	1.00	0.98			
Fit Protected	0.95	1.00	0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3433	2787	1736	4988	1752	4960			
FIt Permitted	0.95	1.00	0.95	1.00	0.14	1.00			
Satd. Flow (perm)	3433	2787	1736	4988	254	4960			
Volume (vph)	139	1101	417	1772	10	1173	110		
Peak-hour factor, PHF	0.81	0.92	0.80	0.76	0.92	0.92	0.77	2000,000,000	
Adj. Flow (vph)	172	1197	521	2332	11	1275	143		
RTOR Reduction (vph)	0	700	0	0	0	15	0		
Lane Group Flow (vph)	172	497	521	2332	11	1403	0		
Heavy Vehicles (%)	2%	2%	4%	4%	3%	3%	3%		
Turn Type		Prot	Prot		Perm				
Protected Phases	3	3	1	6		2			
Permitted Phases					2				
Actuated Green, G (s)	20.0	20.0	25.0	58.0	27.0	27.0			
Effective Green, g (s)	22.0	22.0	27.0	60.0	29.0	29.0			
Actuated g/C Ratio	0.24	0.24	0.30	0.67	0.32	0.32			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	839	681	521	3325	82	1598			
v/s Ratio Prot	0.05	c0.18	c0.30	0.47		c0.28			
v/s Ratio Perm					0.04				
v/c Ratio	0.21	0.73	1.00	0.70	0.13	0.88			
Uniform Delay, d1	27.0	31.3	31.5	9.4	21.6	28.8			
Progression Factor	1.00	1.00	1.18	0.45	0.71	0.68			
Incremental Delay, d2	0.1	3.9	35.2	1.0	2.9	6.3		46.00	
Delay (s)	27.2	35.2	72.3	5.2	18.4	25.9			
Level of Service	С	D	Ε	Α	В	С			
Approach Delay (s)	34.2			17.4		25.9			
Approach LOS	С			В		С			
Intersection Summary									
HCM Average Control D	elav		23.6	H	ICM Le	vel of Se	rvice	С	
HCM Volume to Capacit			0.88						
Actuated Cycle Length (90.0	S	um of l	ost time	(s)	12.0	
Intersection Capacity Ut			83.4%	I(CU Leve	el of Ser	vice	Е	
Analysis Period (min)			15						
c Critical Lane Group									

	•	→	*	•	-	•	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		75	ት ትጉ		ሻ	ተ ቀጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	130		0	90		0
Storage Lanes	0		0	0		0	1		0	1		0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Trailing Detector (ft)	0	0		0	0	_	0	0	•	0	0	_
Turning Speed (mph)	15		9	15		9	15		9	15		9
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)	***************************************	792			277			631			1367	
Travel Time (s)		18.0			6.3		400	14.3	40	•	31.1	054
Volume (vph)	250	0	93	15	3	0	183	1915	10	2	2035	254
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Turn Type	Perm			Perm	_		Prot	^		Prot	^	
Protected Phases		4		_	8		1	6		5	2	
Permitted Phases	4	•		8			_	^		_	9	
Detector Phases	4	4		8	8		1	6		5	2 41.0	
Minimum Initial (s)	26.0	26.0		26.0	26.0		7.0	41.0		7.0	46.0	
Minimum Split (s)	32.0	32.0	0.0	32.0	32.0	^ ^	12.0	46.0	0.0	12.0 12.0	46.0	0.0
Total Split (s)	32.0	32.0	0.0	32.0	32.0	0.0	12.0	46.0		13.3%		0.0%
Total Split (%)	35.6%		0.0%		35.6%	0.0%			0.0%	3.0	3.0	U.U 76
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0 2.0		2.0	2.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0					
Lead/Lag							Lead	Lag Yes		Lead Yes	Lag Yes	
Lead-Lag Optimize?	N 1	N1		Mana	Mans		Yes	C-Min		None	C-Min	
Recall Mode	None	None		None	None		None	C-IVIII		NOHE	O-IVIII I	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 44.8 (50%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

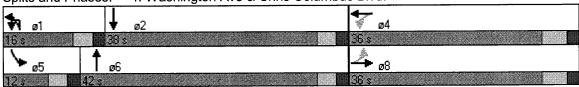
Splits and Phases: 3: Christian St. & Chris Columbus Blvd.

	<i>y</i>	→	\	1	4-	4	4	<u></u>	/	\	 	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			43-		ሻ	ተተጉ		` *j	ተተጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor		1.00			1.00		1.00	0.91		1.00	0.91	
Frt		0.96			1.00		1.00	1.00		1.00	0.98	
Flt Protected		0.96			0.96		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1732			1787		1770	5081		1770	5001	
Flt Permitted		0.77			0.77		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1387			1433		1770	5081		1770	5001	
Volume (vph)	250	0	93	15	3	0	183	1915	10	2	2035	254
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	272	0	101	16	3	0	199	2082	11	2	2212	276
RTOR Reduction (vph)	0	15	0	0	0	0	0	0	0	0	18	0
Lane Group Flow (vph)	0	358	0	0	19	0	199	2093	0	2	2470	0
Turn Type	Perm			Perm			Prot			Prot		
Protected Phases		4			8		1	6		5	2	
Permitted Phases	4			8							***************************************	
Actuated Green, G (s)		26.0			26.0		7.0	46.6		1.4	41.0	
Effective Green, g (s)		28.0			28.0	200000000000000000000000000000000000000	8.0	47.6		2.4	42.0	
Actuated g/C Ratio		0.31			0.31		0.09	0.53		0.03	0.47	
Clearance Time (s)		6.0			6.0		5.0	5.0	***************************************	5.0	5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		432			446		157	2687		47	2334	
v/s Ratio Prot							c0.11	0.41		0.00	c0.49	
v/s Ratio Perm	0.0000000000000000000000000000000000000	c0.26			0.01							
v/c Ratio		0.83			0.04		1.27	0.78		0.04	1.06	
Uniform Delay, d1		28.8			21.6		41.0	17.0		42.7	24.0	
Progression Factor		1.00			1.00		1.02	0.62		1.33	0.71	
Incremental Delay, d2		12.3			0.0		132.0	0.5		0.2	31.7	
Delay (s)		41.1			21.7		173.6	11.0		56.8	48.9	
Level of Service		D		******************************	С		F	В		Е	D	
Approach Delay (s)		41.1			21.7			25.1			48.9	
Approach LOS		D			С			С			D	
Intersection Summary												
HCM Average Control D			37.7	Н	ICM Lev	el of Se	ervice		D			****
HCM Volume to Capacit			1.00									
Actuated Cycle Length (90.0		um of lo				12.0			
Intersection Capacity Ut	ilization	l	86.8%	10	DU Leve	of Ser	vice		Ε			
Analysis Period (min)			15									
c Critical Lane Group												

	→	-	\rightarrow	•	•	•	₽Ĩ	1	†	*	-	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ነኘ	7+			€}•			ă	ተተጉ		ሻ	ተተጉ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	13	12	12	16	12	12	12	12	12	10	13
Storage Length (ft)	0		0	0		0		150		0	150	
Storage Lanes	1		0	0	_	0	_	1		0	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50		50	50 0
Trailing Detector (ft)	0	0	_	0	0	•	0	0	0	^	0	U
Turning Speed (mph)	15		9	15		9	9	15		9	15	
Right Turn on Red			Yes		00	Yes			20	Yes		30
Link Speed (mph)		30			30				30 180			631
Link Distance (ft)		259			507				4.1			14.3
Travel Time (s)	F00	5.9	0	20	11.5 2	4	21	278	1503	4	3	1378
Volume (vph)	599	0 0.92	0.92	20 0.69	2 0.69	0.69	0.92	0.92	0.92	0.92	0.89	0.89
Peak Hour Factor	0.80 3 %	0.92 2%	2%	0.69	0.09	0.09	2%	2%	2%	2%	2%	2%
Heavy Vehicles (%)	Perm	276	Z 70	Perm	U /0	U /0	Prot	Prot	270	270	Prot	270
Turn Type Protected Phases	reiiii	8		r eiiii	4		1 100	1100	6		5	2
Permitted Phases	8	U		4	7				•		J	_
Detector Phases	8	8		4	4		1	1	6		5	2
Minimum Initial (s)	30.0	30.0		30.0	30.0		11.0	11.0	29.0		5.0	29.0
Minimum Split (s)	36.0	36.0		36.0	36.0		16.0	16.0	34.0		10.0	34.0
Total Split (s)	36.0	36.0	0.0	36.0	36.0	0.0	16.0	16.0	42.0	0.0	12.0	38.0
Total Split (%)	40.0%			40.0%		0.0%	17.8%	17.8%	46.7%	0.0%	13.3%	42.2%
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0	3.0		3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0		2.0	2.0
Lead/Lag							Lead	Lead	Lag	•••••	Lead	Lag
Lead-Lag Optimize?							Yes	Yes	Yes		Yes	Yes
Recall Mode	None	None		None	None		None	None	C-Min		Min	C-Min

Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 50.3 (56%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Splits and Phases: 4: Washington Ave & Chris Columbus Blvd.

	000	
Lane Group	SBR	
体 Configurations		
Ideal Flow (vphpl)	1900	
Lane Width (ft)	12	
Storage Length (ft)	0	
Storage Lanes	0	
Total Lost Time (s)	4.0	
Leading Detector (ft)		
Trailing Detector (ft)		
Turning Speed (mph)	9	
Right Turn on Red	Yes	
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Volume (vph)	779	
Peak Hour Factor	0.89	
Heavy Vehicles (%)	2%	
Turn Type		
Protected Phases		
Permitted Phases		
Detector Phases		
Minimum Initial (s)		
Minimum Split (s)		
Total Split (s)	0.0	
Total Split (%)	0.0%	
Yellow Time (s)		
All-Red Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode		
Intersection Summary		

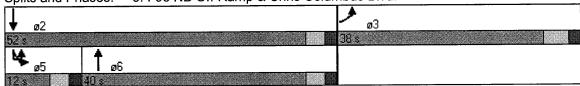
	•		_	_	←	1	€n	•	†	<u> </u>	\	Ţ
		FDT	EBR	▼ WBL	WBT	WBR	NBU	, NBL	NBT	, NBR	SBL	SBT
Movement	EBL	EBT	EDK	VVDL		WDN	NDU		<u>ተተጉ</u>	INDIN	<u> </u>	<u>ተተ</u> ጉ
Lane Configurations	4000	4000	1900	1900	ብ 1900	1900	1900	ሕ 1900	TT ₩ 1900	1900	1900	1900
Ideal Flow (vphpl)	1900 12	1900 13	1900	1900	1900	12	12	12	12	12	10	13
Lane Width	4.0	13	12	12	4.0	12	12	4.0	4.0	12	4.0	4.0
Total Lost time (s)	1.00				1.00			1.00	0.91		1.00	0.91
Lane Util. Factor					0.98			1.00	1.00		1.00	0.95
Frt	1.00				0.96			0.95	1.00		0.95	1.00
Fit Protected	0.95				2030			1770	5083		1652	4970
Satd. Flow (prot)	1752				0.85			0.95	1.00		0.95	1.00
Flt Permitted	0.73				1797			1770	5083		1652	4970
Satd. Flow (perm)	1351						- 24		1503	4	3	1378
Volume (vph)	599	0	0	20	2	4	21	278	0.92	0.92	0.89	0.89
Peak-hour factor, PHF	0.80	0.92	0.92	0.69	0.69	0.69	0.92	0.92				1548
Adj. Flow (vph)	749	0	0	29	3	6	23	302	1634	4	3 0	
RTOR Reduction (vph)	0	0	0	0	4	0	0	0	4000	0		113
Lane Group Flow (vph)	749	0	0	0	34	0	0	325	1638	0	3	2310
Heavy Vehicles (%)	3%	2%	2%	0%	0%	0%	2%	2%	2%	2%	2%	2%
Turn Type	Perm			Perm			Prot	Prot			Prot	•
Protected Phases		8			4		1	1	6		5	2
Permitted Phases	8		***************************************	4								
Actuated Green, G (s)	30.0				30.0			11.0	38.2		5.8	33.0
Effective Green, g (s)	32.0				32.0			12.0	39.2		6.8	34.0
Actuated g/C Ratio	0.36				0.36			0.13	0.44		80.0	0.38
Clearance Time (s)	6.0				6.0			5.0	5.0		5.0	5.0
Vehicle Extension (s)	3.0				3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	480				639			236	2214		125	1878
v/s Ratio Prot								c0.18	0.32		0.00	c0.46
v/s Ratio Perm	c0.55				0.02							
v/c Ratio	1.56				0.05			1.38	0.74		0.02	1.23
Uniform Delay, d1	29.0				19.1			39.0	21.2		38.5	28.0
Progression Factor	1.00				1.00			1.08	0.65		1.13	0.82
Incremental Delay, d2	262.2				0.0			191.3	2.0		0.0	103.9
Delay (s)	291.2				19.1			233.6	15.8		43.5	126.8
Level of Service	F				В			F	В		D	F
Approach Delay (s)		291.2			19.1				51.8			126.7
Approach LOS		F			В				D			F
Intersection Summary												
HCM Average Control D	Delay		121.3	F	ICM Lev	el of Se	rvice		F			
HCM Volume to Capaci			1.39									
Actuated Cycle Length ((s)		90.0		Sum of Ic		NACES CONTRACTOR CONTR		12.0			
Intersection Capacity Ut	tilization	1	10.3%	Į(CU Leve	l of Serv	/ice		Н			
Analysis Period (min)			15				***************************************					10000000000000000000000000000000000000
 Critical Lane Group 												

Movement	SBR
L 本 体 Configurations	
(F 1)	1900
Lane Width	12
Total Lost time (s) Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Volume (vph)	779
Peak-hour factor, PHF	0.89
Adj. Flow (vph)	875
RTOR Reduction (vph)	
Lane Group Flow (vph)	0
Heavy Vehicles (%)	2%
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s) Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

	<i>></i>		•	•	•	•	1	†	1	L	/	↓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻሻ		7					ተተ _ጉ			À	ተተተ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	148		0		110	
Storage Lanes	2		1	0		0	0		0		1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50		50					50		50	50	50
Trailing Detector (ft)	0		0					0	_	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	9	15	
Right Turn on Red			Yes			Yes			Yes			
Link Speed (mph)		30			30			30				30
Link Distance (ft)		596			153			487				641
Travel Time (s)		13.5		_	3.5	_	_	11.1	•	7	^	14.6
Volume (vph)	412	0	237	0	0	0	0	1355	0	7	0	1699
Peak Hour Factor	0.94	0.92	0.95	0.92	0.92	0.92	0.92	0.92	0.92	0.44	0.92	0.97
Heavy Vehicles (%)	2%	2%	_2%	2%	2%	2%	2%	2%	2%	0%	0%	3%
Turn Type	Prot		Free					^		Prot	Prot	2
Protected Phases	3		_					6		5	5	2
Permitted Phases			Free					^		F	5	2
Detector Phases	3							6		5 7.0	7.0	35.0
Minimum Initial (s)	32.0							35.0		12.0	12.0	52.0
Minimum Split (s)	38.0	^ ^	0.0	4.0	0.0	0.0	0.0	40.0 40.0	0.0	12.0	12.0	52.0
Total Split (s)	38.0	0.0	0.0	0.0	0.0	0.0%		44.4%			13.3%	
Total Split (%)	42.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.0	0.0%	3.0	3.0	3.0
Yellow Time (s)	4.0							2.0		2.0	2.0	2.0
All-Red Time (s)	2.0									Lead	Lead	2.0
Lead/Lag								Lag Yes		Yes	Yes	
Lead-Lag Optimize?	.							C-Min		None		C-Min
Recall Mode	None							O-MIN		ivone	NUNE	O-IVIII I

Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 10.5 (12%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 5: I-95 NB Off Ramp & Chris Columbus Blvd.

Lane Group	SBR	
Land Configurations		
Ideal Flow (vphpl)	1900	
Storage Length (ft)	0	
Storage Lanes	0	
Total Lost Time (s)	4.0	
Leading Detector (ft)		
Trailing Detector (ft)		
Turning Speed (mph)	9	
Right Turn on Red	Yes	
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)	•	
Volume (vph)	0	
Peak Hour Factor	0.92	
Heavy Vehicles (%)	2%	
Turn Type		
Protected Phases		
Permitted Phases Detector Phases		
Minimum Initial (s) Minimum Split (s)		
Total Split (s)	0.0	
Total Split (%)	0.0%	
Yellow Time (s)	0.070	
All-Red Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode		
Intersection Summary		

-	۶	→	•	•	←	4	1	†	<i>></i>	Ŀ	>	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻሻ		7					ተተ _ጉ			Ä	ተተተ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0					4.0			4.0	4.0
Lane Util. Factor	0.97		1.00					0.91			1.00	0.91
Frt	1.00		0.85					1.00			1.00	1.00
Fit Protected	0.95		1.00					1.00			0.95	1.00
Satd. Flow (prot)	3433		1583				www.russ.wom.comconscore.com	5085			1805	5036
Flt Permitted	0.95		1.00					1.00			0.95	1.00
Satd. Flow (perm)	3433		1583					5085			1805	5036
Volume (vph)	412	0	237	0	0	0	0	1355	0	7	0	1699
Peak-hour factor, PHF	0.94	0.92	0.95	0.92	0.92	0.92	0.92	0.92	0.92	0.44	0.92	0.97
Adj. Flow (vph)	438	0	249	0	0	0	0	1473	0	16	0	1752
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	438	0	249	0	0	0	0	1473	0	0	16	1752
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	0%	0%	3%
Turn Type	Prot		Free							Prot	Prot	_
Protected Phases	3						*************	6		5	5	2
Permitted Phases			Free									
Actuated Green, G (s)	32.0		90.0		WARRING TO A STATE OF THE STATE		DO 100 100 000 A PRODUCE DE CONTROL DE CONTR	40.6			1.4	47.0
Effective Green, g (s)	34.0		90.0					41.6			2.4	48.0
Actuated g/C Ratio	0.38		1.00					0.46			0.03	0.53
Clearance Time (s)	6.0							5.0			5.0	5.0
Vehicle Extension (s)	3.0							3.0			3.0	3.0
Lane Grp Cap (vph)	1297		1583					2350			48	2686
v/s Ratio Prot	c0.13		aa a a aaa aaaaaa	*******************************				0.29			0.01	c0.35
v/s Ratio Perm			0.16									
v/c Ratio	0.34		0.16					0.63			0.33	0.65
Uniform Delay, d1	20.0		0.0					18.3			43.0	15.0
Progression Factor	1.00		-1.00					0.48			0.68	1.15
Incremental Delay, d2	0.2		0.2					1.0			1.0	0.3
Delay (s)	20.1		0.2					9.8			30.5	17.6
Level of Service	C	40.0	Α		0.0			A			С	17.7
Approach Delay (s)		12.9			0.0			9.8				17.7 B
Approach LOS		В			Α			А				D
Intersection Summary												
HCM Average Control D			13.9	F	HCM Lev	vel of Se	rvice		В			
HCM Volume to Capacit			0.52									
Actuated Cycle Length (90.0			ost time			8.0			
Intersection Capacity Ut	ilization		51.2%	j.	CU Leve	el of Ser	vice		Α	02.00000000000000000000000000000000000		
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
L փሰተ Configurations	
Ideal Flow (vphpl)	1900
Total Lost time (s) Lane Util. Factor	
Frt	
Fit Protected	
Satd. Flow (prot)	
Flt Permitted Satd. Flow (perm)	
Volume (vph)	0
Peak-hour factor, PHF	0.92
Adj. Flow (vph)	
RTOR Reduction (vph)	0
Lane Group Flow (vph) Heavy Vehicles (%)	0 2%
Turn Type	2.70
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s) Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2 Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

	*	-	•	•	←	*	₽Ĩ	4	†	<i>></i>	L	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ሻ	7+			4			Ä	ተተኩ			Ä
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	13	12	12	13	12	10	10	11	12	10	10
Storage Length (ft)	0		0	0		0		100		0		150
Storage Lanes	- 1		0	0		0		1		0		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50	D F. S. LAW CO. A. C.	50	50
Trailing Detector (ft)	0	0		0	0		0	0	0		0	0
Turning Speed (mph)	15		9	15		9	9	15		9	9	15
Right Turn on Red			Yes			Yes				Yes		
Link Speed (mph)		30			30				30			
Link Distance (ft)		625			893				453			
Travel Time (s)		14.2			20.3				10.3	4.0		
Volume (vph)	218	29	128	30	33	22	19	81	1105	18	11	35
Peak Hour Factor	0.92	0.92	0.92	0.84	0.84	0.84	0.75	0.75	0.80	0.47	0.92	0.87
Heavy Vehicles (%)	2%	2%	2%	_ 1%	1%	1%	2%	4%	2%	2%	4%	4%
Turn Type	Perm	_		Perm	_		Prot	Prot			Prot	Prot
Protected Phases		3		_	7		1	1	6		5	5
Permitted Phases	3	•		7	_		_	_	^		_	F
Detector Phases	3	3		7	7		1	1	6		5	5
Minimum Initial (s)	32.0	32.0		32.0	32.0		7.0	7.0	35.0		7.0	7.0
Minimum Split (s)	38.0	38.0	0.0	38.0	38.0	0.0	12.0	12.0	40.0 40.0	0.0	12.0 12.0	12.0 12.0
Total Split (s)	38.0	38.0	0.0	38.0	38.0	0.0	12.0	12.0 13.3%		0.0	13.3%	
Total Split (%)	42.2%		0.0%	42.2%		0.0%				U.U%		3.0
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0 2.0	3.0 2.0		3.0 2.0	2.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0					
Lead/Lag							Lead	Lead	Lag		Lead Yes	Lead Yes
Lead-Lag Optimize?	Non-	None		None	None		Yes None	Yes	Yes C-Max		None	None
Recall Mode	None	None		None	None		None	иопе	C-IVIAX		ионе	NONE

Area Type:

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 8 (9%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 6: Reed St. & Chris Columbus Blvd.

Other

	¥	4
Lane Group	SBT	SBR
Lan Configurations	ተ ቀኁ	
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	10	12
Storage Length (ft)		0
Storage Lanes		0
Total Lost Time (s)	4.0	4.0
Leading Detector (ft)	50	
Trailing Detector (ft)	0	^
Turning Speed (mph)		9
Right Turn on Red	20	Yes
Link Speed (mph)	30	
Link Distance (ft)	487	
Travel Time (s)	11.1 1668	220
Volume (vph) Peak Hour Factor	0.97	0.80
Heavy Vehicles (%)	3%	0.80
Turn Type	370	U /U
Protected Phases	2	
Permitted Phases		
Detector Phases	2	
Minimum Initial (s)	35.0	
Minimum Split (s)	40.0	
Total Split (s)	40.0	0.0
	44.4%	0.0%
Yellow Time (s)	3.0	
All-Red Time (s)	2.0	
Lead/Lag	Lag	

Lead-Lag Optimize?

Intersection Summary

Recall Mode

Yes

C-Max

	۶	-	*	•	+	•	₽	1	†	/	L	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ነና	1→			4			ă	ተተ _ጉ			ă
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	13	12	12	13	12	10	10	11	12	10	10
Total Lost time (s)	4.0	4.0			4.0			4.0	4.0			4.0
Lane Util. Factor	1.00	1.00			1.00			1.00	0.91			1.00
Frt	1.00	0.88			0.97			1.00	1.00			1.00
Flt Protected	0.95	1.00			0.98			0.95	1.00			0.95
Satd. Flow (prot)	1888	1690			1843			1626	4896			1620
FIt Permitted	0.71	1.00			0.87			0.95	1.00			0.95
Satd. Flow (perm)	1409	1690			1631			1626	4896			1620
Volume (vph)	218	29	128	30	33	22	19	81	1105	18	11	35
Peak-hour factor, PHF	0.92	0.92	0.92	0.84	0.84	0.84	0.75	0.75	0.80	0.47	0.92	0.87
Adj. Flow (vph)	237	32	139	36	39	26	25	108	1381	38	12	40
RTOR Reduction (vph)	0	80	0	0	14	0	0	0	3	0	0	0
Lane Group Flow (vph)	237	91	0	0	87	0	0	133	1416	0	0	52
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	2%	4%	2%	2%	4%	4%
Turn Type	Perm			Perm			Prot	Prot			Prot	Prot
Protected Phases		3			7		1	1	6		5	5
Permitted Phases	3			7		***************************************	verseemen verseemen midsele					_
Actuated Green, G (s)	32.0	32.0			32.0			7.0	36.4			5.6
Effective Green, g (s)	34.0	34.0			34.0			8.0	37.4			6.6
Actuated g/C Ratio	0.38	0.38			0.38			0.09	0.42			0.07
Clearance Time (s)	6.0	6.0			6.0			5.0	5.0			5.0
Vehicle Extension (s)	3.0	3.0			3.0			3.0	3.0			3.0
Lane Grp Cap (vph)	532	638	*************************		616			145	2035			119
v/s Ratio Prot		0.05						c0.08	0.29			0.03
v/s Ratio Perm	c0.17				0.05							^ · · ·
v/c Ratio	0.45	0.14			0.14			0.92	0.70			0.44
Uniform Delay, d1	20.9	18.4			18.4			40.7	21.6			39.9
Progression Factor	1.00	1.00			1.00			1,10	0.77			1.48
Incremental Delay, d2	0.6	0.1			0.1			48.2	1.9			2.1 61.0
Delay (s)	21.5	18.5			18.5			92.8 F	18.5 B			01.0 E
Level of Service	С	В			В			Г	24.9			
Approach Delay (s)		20.3			18.5 B				24.9 C			
Approach LOS		С			Ь			******************************	C			
Intersection Summary							-					
HCM Average Control D			35.2	Н	ICM Lev	el of Se	rvice		D			
HCM Volume to Capaci			0.78	_	-							
Actuated Cycle Length (90.0			ost time			12.0			
Intersection Capacity UI	ilization		33.7%	1(JU Leve	el of Serv	/ice		E			
Analysis Period (min)			15									
c Critical Lane Group												

	7	
Movement	SBT	SBR
Lan Configurations	ተ ተጉ	
Ideal Flow (vphpl)	1900	1900
Lane Width	10	12
Total Lost time (s)	4.0	
Lane Util. Factor	0.91	
Frt	0.98	
Flt Protected	1.00	
Satd. Flow (prot)	4622	
Flt Permitted	1.00	
Satd. Flow (perm)	4622	
Volume (vph)	1668	220
Peak-hour factor, PHF	0.97	0.80
Adj. Flow (vph)	1720	275
RTOR Reduction (vph)	24	
Lane Group Flow (vph)	1971	0
Heavy Vehicles (%)	3%	0%
Turn Type	_	
Protected Phases	2	
Permitted Phases	25.0	
Actuated Green, G (s)	35.0	
Effective Green, g (s)	36.0	
Actuated g/C Ratio	0.40 5.0	
Clearance Time (s)	3.0	
Vehicle Extension (s)		
Lane Grp Cap (vph)	1849 c0.43	
v/s Ratio Prot v/s Ratio Perm	CU.43	
v/s Ratio Perm	1.07	
Uniform Delay, d1	27.0	
Progression Factor	0.26	
Incremental Delay, d2	39.4	
Delay (s)	46.4	
Level of Service	то.т D	
Approach Delay (s)	46.8	
Approach LOS	D	
• •	-	
Intersection Summary		

	۶	→	7	4	—	•	₹ī	•	†	/	/	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations									ተተኩ		ሻ	ቀ ቀሱ
Sign Control		Stop			Stop				Free			Free
Grade		0%		***************************************	0%				0%	_	<u>.</u>	0%
Volume (veh/h)	0	0	0	0	0	0	116	100	1220	0	0	1819
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.73	0.75	0.82	0.92	0.92	0.84
Hourly flow rate (vph)	0	0	0	0	0	0	0	133	1488	0	0	2165
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh) Median type		None			None							
Median storage veh)		INULIG			INUITO							
Upstream signal (ft)									450			453
pX, platoon unblocked	0.70	0.70	0.64	0.70	0.70	0.88	0.00	0.64	_		0.88	_
vC, conflicting volume	2944	3936	738	2476	3952	496	0	2198			1488	
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	2122	3542	0	1452	3565	142	0	1739			1274	
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	0.0	4.2			4.1	
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	0.0	2.2			2.2	
p0 queue free %	100	100	100	100	100	100	0	40			100	
cM capacity (veh/h)	10	2	690	33	2	771	0	222			474	
Direction, Lane#	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	SB 4					
Volume Total	431	595	595	0	866	866	465					
Volume Left	133	0	0	0	0	0	0					
Volume Right	0	0	0	0	0	0	32					
cSH	222	1700	1700	1700	1700	1700	1700					
Volume to Capacity	0.60	0.35	0.35	0.00	0.51	0.51	0.27					
Queue Length 95th (ft)	86	0	0	0	0.0	0	0.0					
Control Delay (s)	34.8	0.0	0.0	0.0	0.0	0.0	U.U					
	D 9.3			0.0								
Approach Delay (s) Approach LOS	9.3			U.U								
• •												
Intersection Summary												
Average Delay			3.9	1	OLI 1	1 - 1 0			^			
Intersection Capacity U	uuzation		70.4%	J	CU Leve	a oi sel	vice		С			
Analysis Period (min)			15									

Movement	SBR
L‡†‡ Configurations	
Sign Control	
Grade	
Volume (veh/h)	27
Peak Hour Factor	0.84
Hourly flow rate (vph)	32
Pedestrians	
Lane Width (ft)	
Walking Speed (ft/s)	
Percent Blockage	
Right turn flare (veh)	
Median type	
Median storage veh)	
Upstream signal (ft)	
pX, platoon unblocked	
vC, conflicting volume	
vC1, stage 1 conf vol	
vC2, stage 2 conf vol	
vCu, unblocked vol tC, single (s)	
tC, 2 stage (s)	
tF (s)	
p0 queue free %	
cM capacity (veh/h)	
Direction, Lane#	

	<i>></i>		•	•	←	•	₽		†	~	-	↓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations									ተተቡ		ሻ	ተትጉ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Turning Speed (mph)	15		9	15		9	9	15		9	15	100000000000000000000000000000000000000
Link Speed (mph)		30			30				30			30
Link Distance (ft)	***************************************	611			184				450		V	453
Travel Time (s)		13.9			4.2				10.2			10.3
Volume (vph)	0	0	0	0	0	0	116	100	1220	0	0	1819
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.73	0.75	0.82	0.92	0.92	0.84
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	4%	4%	4%	4%	2%	2%
Sign Control		Stop			Stop				Free			Free
Intersection Summary												
Area Type:	Other											
Control Type: Unsignali	zed											

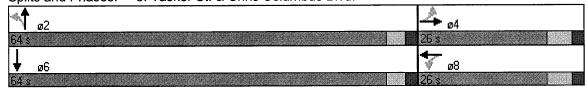
1

Lane Group	SBR	
L‡nt Configurations		
Ideal Flow (vphpl)	1900	
Turning Speed (mph)	9	
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Volume (vph)	27	
Peak Hour Factor	0.84	
Heavy Vehicles (%)	2%	
Sign Control		
Intersection Summary		

			_	_	-		_				ı	
	7	\rightarrow	*	✓		1	7	T		*	+	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			ተተ _ጉ	-		ተተጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0			4.0			4.0	
Lane Util. Factor		1.00			1.00			0.91			0.91	
Frt	***************************************	0.94			0.95			1.00			0.99	
Flt Protected		0.98			1.00			1.00			1.00	
Satd. Flow (prot)		1730			1769			5081			5053	
Flt Permitted		0.82			0.97			0.93			1.00	
Satd. Flow (perm)		1437			1723			4746			5053	
Volume (vph)	79	69	109	10	77	46	4	1303	6	0	1762	78
Peak-hour factor, PHF	0.89	0.89	0.89	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.99	0.99
Adj. Flow (vph)	89	78	122	11	84	50	4	1416	7	0	1780	79
RTOR Reduction (vph)	0	22	0	0	21	0	0	1	0	0	5	0
Lane Group Flow (vph)	0	267	0	0	124	0	0	1426	0	0	1854	0
Turn Type	Perm			Perm			Perm					***************************************
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2					
Actuated Green, G (s)		20.0			20.0			59.0			59.0	
Effective Green, g (s)		22.0			22.0			60.0			60.0	
Actuated g/C Ratio		0.24			0.24			0.67			0.67	
Clearance Time (s)		6.0			6.0			5.0	···········	anno 17 maret 2000 - 444 444	5.0	ALLES AND ATTENDED
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		351			421			3164			3369	
v/s Ratio Prot											c0.37	
v/s Ratio Perm		c0.19			0.07			0.30				
v/c Ratio		0.76			0.29			0.45			0.55	
Uniform Delay, d1		31.6			27.7		*****************	7.1			7.9	
Progression Factor		1.00			1.00			1.00			0.53	
Incremental Delay, d2		9.4			0.4			0.5			0.3	
Delay (s)		40.9			28.1			7.6			4.5	
Level of Service		D			С			Α			Α	
Approach Delay (s)		40.9			28.1			7.6			4.5	
Approach LOS		D			С			Α			Α	
Intersection Summary												
HCM Average Control D	elay		9.5	Н	ICM Lev	el of Se	ervice		Α			
HCM Volume to Capacit	ry ratio		0.61									
Actuated Cycle Length (s)		90.0			ost time			8.0			
Intersection Capacity Ut	ilization		92.5%	10	DU Leve	el of Ser	vice		F			
Analysis Period (min)			15									
c Critical Lane Group												

	•	-	•	✓	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44			ተተ _ጉ			ተተ _ጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50			50	
Trailing Detector (ft)	0	0		0	0		0	0			0	2003-00-13-0-400-0-
Turning Speed (mph)	15		9	15		9	15		9	15		9
Right Turn on Red			Yes			Yes		************	Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		600			820			229			450	
Travel Time (s)		13.6			18.6			5.2			10.2	
Volume (vph)	79	69	109	10	77	46	4	1303	6	0	1762	78
Peak Hour Factor	0.89	0.89	0.89	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.99	0.99
Turn Type	Perm			Perm			Perm	4			<u></u>	
Protected Phases		4			8		_	2			6	
Permitted Phases	4		HO 2000 1000 HO 1000 MARCH 1000 M	8			2	<u>_</u>			<u>_</u>	
Detector Phases	4	4		8	8		2	2			6	
Minimum Initial (s)	20.0	20.0		20.0	20.0		59.0	59.0			59.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		64.0	64.0			64.0	
Total Split (s)	26.0	26.0	0.0	26.0	26.0	0.0	64.0	64.0	0.0	0.0	64.0	0.0
Total Split (%)	28.9%		0.0%	28.9%		0.0%	**********************	71.1%	0.0%	0.0%	71.1%	0.0%
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0			3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0			2.0	
Lead/Lag												
Lead-Lag Optimize?					N.I.		0.14	0 M:			O M:-	
Recall Mode	None	None		None	None		C-Min	C-Min			C-Min	
Intersection Summary												
Area Type:	Other											

Area Type:
Cycle Length: 90


Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 8: Tasker St. & Chris Columbus Blvd.

<i>•</i>	•	4	†	ļ	4	
Movement EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	-		ተተተ	ተተተ	7	
Sign Control Stop			Free	Free	-	
Grade 0%			0%	0%		
Volume (veh/h) 0	0	0	1313	1456	425	
Peak Hour Factor 0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph) 0	0	0	1427	1583	462	
Pedestrians						
Lane Width (ft) Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type None						
Median storage veh)			POSSOPRO POSSOR POS			
Upstream signal (ft)				229		
pX, platoon unblocked 0.84	0.84	0.84				
vC, conflicting volume 2058	528	2045				
vC1, stage 1 conf vol		0				
vC2, stage 2 conf vol vCu, unblocked vol 1874	43	1857				
vCu, unblocked vol 1874 tC, single (s) 6.8	6.9	4.1				
tC, 2 stage (s)	0.0	3.1				
tF (s) 3.5	3.3	2.2				
p0 queue free % 100	100	100				
cM capacity (veh/h) 53	851	643				
Direction, Lane # NB 1	NB 2	NB 3	SB 1	SB 2	SB3	SB 4
Volume Total 476	476	476	528	528	528	462
Volume Left 0	0	0	0	0	0	0
Volume Right 0	0	0	0	0	0	462
cSH 1700	1700	1700	1700	1700	1700 0.31	1700
Volume to Capacity 0.28		11 72	0.31	0.31	11 37	
Queue Length 95th (ft) 0	0.28	0.28				0.27
Control Delevisor 0.0	0	0	0	0	0	0
Control Delay (s) 0.0						
Lane LOS	0	0	0 0.0	0	0	0
Lane LOS Approach Delay (s) 0.0	0	0	0	0	0	0
Lane LOS Approach Delay (s) 0.0 Approach LOS	0	0	0 0.0	0	0	0
Lane LOS Approach Delay (s) 0.0 Approach LOS Intersection Summary	0	0.0	0 0.0	0	0	0
Lane LOS Approach Delay (s) 0.0 Approach LOS Intersection Summary Average Delay	0.0	0.0	0.0	0.0	0.0	0 0.0
Lane LOS Approach Delay (s) 0.0 Approach LOS Intersection Summary	0.0	0.0	0.0	0.0	0	0 0.0

	→	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations				ተተተ	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	0			100
Storage Lanes	0	0	0			1
Turning Speed (mph)	15	9	15	**************************		9
Link Speed (mph)	30			30	30	
Link Distance (ft)	195		00000000000000000000000000000000000000	126	229	
Travel Time (s)	4.4			2.9	5.2	
Volume (vph)	0	0	0	1313	1456	425
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsigna	lized					

	≯	→	•	•	←	•	•	†	~	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1}			4				
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	0	0	0	0	411	14	51	390	0	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	. 0	0	0	447	15	55	424	0	0	0	0
Direction, Lane #	WB 1	NB1										
Volume Total (vph)	462	479										***************************************
Volume Left (vph)	0	55										
Volume Right (vph)	15	0		***************************************	***************************************	***						
Hadj (s)	0.01	0.06										
Departure Headway (s)	5.3	5.3										
Degree Utilization, x	0.68	0.70										
Capacity (veh/h)	660	660									-	
Control Delay (s)	18.6	19.7										
Approach Delay (s)	18.6	19.7										
Approach LOS	С	С										
Intersection Summary												
Delay			19.2									
HCM Level of Service			С									
Intersection Capacity Ut	llization		52.5%	IC	CU Leve	of Serv	/ice		Α			
Analysis Period (min)			15									

	<i>></i>	-	\	1	←	•	•	†	<i>></i>	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					7-			4				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Turning Speed (mph)	15		9	15		9	15		9	15		9
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		58			195			116			118	
Travel Time (s)		1.3			4.4			2.6			2.7	
Volume (vph)	0	0	0	0	411	14	51	390	0	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Other			•								
Control Type: Unsignali	zed											

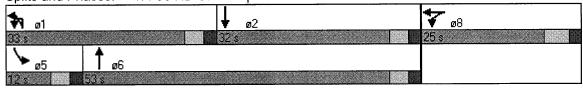
	۶	→	•	•	←	•	₹î	4	†	1	-	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations					414			ሻ	የ ተጉ		ሻ	ተ ቀڼ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.0			4.0	4.0		4.0	4.0
Lane Util. Factor					0.95			1.00	0.91		1.00	0.91
Frt					0.94	**************		1.00	0.99		1.00	0.99
FIt Protected					0.98			0.95	1.00		0.95	1.00
Satd. Flow (prot)					3313			1788	5032		1736	5042
FIt Permitted					0.98			0.95	1.00		0.95	1.00
Satd. Flow (perm)					3313			1788	5032	***************************************	1736	5042
Volume (vph)	0	0	0	7	3	8	6	417	980	59	27	1147
Peak-hour factor, PHF	0.92	0.92	0.92	0.64	0.64	0.64	0.25	0.95	0.82	0.66	0.65	0.85
Adj. Flow (vph)	0	0	0	11	5	12	24	439	1195	89	42	1349
RTOR Reduction (vph)	0	0	0	0	11	0	0	0	5	0	0	7
Lane Group Flow (vph)	0	0	0	0	17	0	0	463	1279	0	42	1437
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	0%	1%	2%	2%	4%	2%
Turn Type				Split			Prot	Prot			Prot	
Protected Phases				8	8		1	1	6		5	2
Permitted Phases												
Actuated Green, G (s)					2.8			30.0	65.9	***************************************	5.3	41.2
Effective Green, g (s)					4.8			31.0	66.9		6.3	42.2
Actuated g/C Ratio					0.05	************************		0.34	0.74		0.07	0.47
Clearance Time (s)					6.0			5.0	5.0		5.0	5.0
Vehicle Extension (s)					3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)					177			616	3740		122	2364
v/s Ratio Prot					c0.01			c0.26	0.25		0.02	c0.29
v/s Ratio Perm												
v/c Ratio					0.09			0.75	0.34		0.34	0.61
Uniform Delay, d1					40.5			26.1	4.0		39.9	17.8
Progression Factor					1.00			0.70	2.25		1.00	1.00
Incremental Delay, d2					0.2			4.7	0.2		1.7	1.2
Delay (s)					40.8			23.1	9.2		41.6	18.9
Level of Service					D			С	Α		D	В
Approach Delay (s)	***************************************	0.0			40.8				12.9			19.6
Approach LOS		Α			D				В			В
Intersection Summary												
HCM Average Control D	elav		16.2	F	ICM Lev	el of Se	rvice		В			
HCM Volume to Capacit			0.63									
Actuated Cycle Length (90.0	S	ium of lo	st time	(s)		12.0			
Intersection Capacity Ut			63.2%		CU Leve				В			
Analysis Period (min)			15	•								
c Critical Lane Group												

Movement	SBR
L ‡ ♠♠ Configurations	
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Volume (vph)	79
Peak-hour factor, PHF	0.83
Adj. Flow (vph)	
RTOR Reduction (vph)	0
Lane Group Flow (vph)	
Heavy Vehicles (%)	0%
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s) Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2 Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection adminially	

	≯	-	•	•	←	•	₹ì	•	†	_	-	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations					4T>			ሻ	ተተኈ		ሻ	ተተ _ጉ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0		152		0	320	
Storage Lanes	0		0	0		0		1		0	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)				50	50		50	50	50		50	50
Trailing Detector (ft)		****		0	0		0	0	0		0	0
Turning Speed (mph)	15		9	15		9	9	15		9	15	
Right Turn on Red			Yes			Yes				Yes		
Link Speed (mph)		30			30				30			30
Link Distance (ft)		369			514				1103			527
Travel Time (s)		8.4			11.7	_	-		25.1		^=	12.0
Volume (vph)	0	0	0	7	3	8	6	417	980	59	27	1147
Peak Hour Factor	0.92	0.92	0.92	0.64	0.64	0.64	0.25	0.95	0.82	0.66	0.65	0.85
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	0%	1%	2%	2%	4%	2%
Turn Type				Split			Prot	Prot			Prot	0
Protected Phases				8	8		1	1	6		5	2
Permitted Phases				•			4	4	^		_	^
Detector Phases				8	8		1	1	6		5	2
Minimum Initial (s)				7.0	7.0		5.0	5.0	27.0		5.0	27.0
Minimum Split (s)			• • •	13.0	13.0		10.0	10.0	53.0	0.0	10.0	32.0
Total Split (s)	0.0	0.0	0.0	25.0	25.0	0.0	33.0	33.0	53.0	0.0	12.0	32.0
Total Split (%)	0.0%	0.0%	0.0%		27.8%	0.0%	36.7%			0.0%	13.3%	
Yellow Time (s)				4.0	4.0		3.0	3.0	3.0		3.0	3.0
All-Red Time (s)				2.0	2.0		2.0	2.0	2.0		2.0	2.0
Lead/Lag							Lead	Lead	Lag		Lead	Lag
Lead-Lag Optimize?				. K.I			Yes	Yes	Yes		Yes	Yes C-Min
Recall Mode				None	None		None	None	C-Min		None	C-IVIII

Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 28.9 (32%), Referenced to phase 2:SBT and 6:NBT, Start of Green

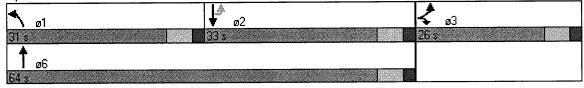
Natural Cycle: 80

Control Type: Actuated-Coordinated

Splits and Phases: 1: I-95 NB On Ramp & Chris Columbus Blvd.

Lane Group	SBR	
Lane Group Lane Group	JUN	
Ideal Flow (vphpl)	1900	
Storage Length (ft)	0	
Storage Lanes	0	
Total Lost Time (s)	4.0	
Leading Detector (ft)		
Trailing Detector (ft)		
Turning Speed (mph)	9	
Right Turn on Red	Yes	
Link Speed (mph)		
Link Distance (ft)		
Travel Time (s)		
Volume (vph)	79	
Peak Hour Factor	0.83	
Heavy Vehicles (%)	0%	
Turn Type		
Protected Phases		
Permitted Phases		
Detector Phases		
Minimum Initial (s)		
Minimum Split (s) Total Split (s)	0.0	
Total Split (%)	0.0%	
Yellow Time (s)	0.070	
All-Red Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode		
Intersection Summary		
intersection community		

	•	•	4	†	L♣	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR	
Lane Configurations	ሻሻ	777	ሻ	ተተተ	Û	ተተተ		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0	4.0	4.0	4.0		4.0		
Lane Util. Factor	0.97	0.88	1.00	0.91		0.91		
Frt	1.00	0.85	1.00	1.00		0.99		
Flt Protected	0.95	1.00	0.95	1.00		1.00		
Satd. Flow (prot)	3400	2814	1787	5085		5064	***************************************	
Flt Permitted	0.95	1.00	0.95	1.00		1.00		
Satd. Flow (perm)	3400	2814	1787	5085		5064		
Volume (vph)	134	1006	549	1324	0	1058	104	
Peak-hour factor, PHF	0.81	0.90	0.94	0.84	0.92	0.93	0.89	
Adj. Flow (vph)	165	1118	584	1576	0	1138	117	
RTOR Reduction (vph)	0	703	0	0	0	14	0	
Lane Group Flow (vph)	165	415	584	1576	0	1241	0	And the second s
Heavy Vehicles (%)	3%	1%	1%	2%	2%	1%	1%	
Turn Type		Prot	Prot		Perm			
Protected Phases	3	3	1	6		2		
Permitted Phases					2			
Actuated Green, G (s)	20.0	20.0	25.0	58.0		27.0		
Effective Green, g (s)	22.0	22.0	27.0	60.0		29.0		
Actuated g/C Ratio	0.24	0.24	0.30	0.67		0.32		
Clearance Time (s)	6.0	6.0	6.0	6.0		6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		
Lane Grp Cap (vph)	831	688	536	3390		1632		
v/s Ratio Prot	0.05	c0.15	c0.33	0.31		c0.25		
v/s Ratio Perm								
v/c Ratio	0.20	0.60	1.09	0.46		0.76		
Uniform Delay, d1	27.0	30.1	31.5	7.2		27.4		
Progression Factor	1.00	1.00	1.37	0.26		0.72		
Incremental Delay, d2	0.1	1.5	56.7	0.3		2.9		
Delay (s)	27.1	31.6	100.0	2.1		22.6		
Level of Service	C	C	F	Α		C		
Approach Delay (s)	31.0			28.6		22.6		
Approach LOS	С			С		С		
Intersection Summary								
HCM Average Control D	elay		27.7	H	ICM Le	vel of Ser	vice	C
HCM Volume to Capacit			0.83					
Actuated Cycle Length (90.0			ost time (12.0
Intersection Capacity Ut	ilization		79.8%	l(CU Leve	el of Serv	ice	D
Analysis Period (min)			15					
c Critical Lane Group								


	•	*	*	†	L	ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBU	SBT	SBR	
Lane Configurations	ايراير	77	ሻ	ተተተ	Ð	ተተተ		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0	150		150		0	
Storage Lanes	2	2	1		1		0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	50	50	50		18 July 19 19 19 19 19 19 19 19 19 19 19 19 19
Trailing Detector (ft)	0	0	0	0	0	0		
Turning Speed (mph)	15	9	15		9		9	
Right Turn on Red		Yes					Yes	
Link Speed (mph)	30			30		30		
Link Distance (ft)	589			1367		1103		
Travel Time (s)	13.4			31.1		25.1		
Volume (vph)	134	1006	549	1324	0	1058	104	
Peak Hour Factor	0.81	0.90	0.94	0.84	0.92	0.93	0.89	
Heavy Vehicles (%)	3%	1%	1%	2%	2%	1%	1%	
Turn Type		Prot	Prot		Perm			
Protected Phases	3	3	1	6		2		
Permitted Phases					2			
Detector Phases	3	3	1	6	2	2		
Minimum Initial (s)	20.0	20.0	25.0	27.0	27.0	27.0		
Minimum Split (s)	26.0	26.0	31.0	64.0	33.0	33.0		
Total Split (s)	26.0	26.0	31.0	64.0	33.0	33.0	0.0	
Total Split (%)	28.9%			71.1%		36.7%	0.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0		
Lead/Lag			Lead		Lag	Lag		
Lead-Lag Optimize?			Yes		Yes	Yes		
Recall Mode	None	None	None	C-Max	C-Max	C-Max		
Intersection Summary								
Area Type:	Other							
Cycle Length: 90				NAME OF THE OWNER, WHEN THE OW			**************************************	
Actuated Cycle Length								
Offset: 40.8 (45%), Ref	ferenced	to phas	se 2:SB	TU and	6:NBT.	Start of	Green	

Offset: 40.8 (45%), Referenced to phase 2:SBTU and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 2: I-676 On & I-676/95 Off Ramp & Chris Columbus Blvd.

	≯	→	\rightarrow	1	←	*	4	†	*	L	/	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	-	44			43-		75	ተተኩ			اير	ተተጉ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0		4.0	4.0	·····		4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	0.91			1.00	0.91
Frt		0.94			0.98		1.00	1.00			1.00	0.98
Flt Protected		0.97			0.96		0.95	1.00			0.95	1.00
Satd. Flow (prot)		1721			1774		1805	5080			1805	5014
FIt Permitted		0.82			0.76		0.95	1.00			0.61 1152	1.00
Satd. Flow (perm)		1444			1399		1805	5080		-		5014
Volume (vph)	157	2	142	13	2	2	172	1699	9	5 0.62	16	1714
Peak-hour factor, PHF	0.82	0.25	0.89	0.60	0.50	0.50	0.87	0.84	0.56	0.62	0.31 52	0.95 1804
Adj. Flow (vph)	191	8	160	22	4	4	198 0	2023	16 0	0	0 0	30
RTOR Reduction (vph)	0	32 327	0 0	0	3 27	0 0	198	2038	0	0	60	2112
Lane Group Flow (vph)	20/		0%	2%	21 0%	0%	0%	2%	0%	0%	0%	1%
Heavy Vehicles (%)	2%	0%	U 70		0 /0	0 /0	Prot	2 /0		ustom	Prot	1 70
Turn Type	Perm			Perm	8		710t	6	U	ustoni	1 10t	2
Protected Phases	4	4		8	0		ı	U		5	J	2
Permitted Phases Actuated Green, G (s)	4	26.0		U	26.0		7.0	42.4		J	5.6	41.0
Effective Green, g (s)		28.0			28.0		8.0	43.4			6.6	42.0
Actuated g/C Ratio		0.31			0.31		0.09	0.48			0.07	0.47
Clearance Time (s)		6.0			6.0		5.0	5.0			5.0	5.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		449			435		160	2450			84	2340
v/s Ratio Prot		770			700		c0.11	0.40			_ ,	c0.42
v/s Ratio Perm		c0.23			0.02		••••				0.05	
v/c Ratio		0.73			0.06		1.24	0.83			0.71	0.90
Uniform Delay, d1		27.6			21.8		41.0	20.1			40.8	22.1
Progression Factor		1.00			1.00		1.06	0.52	***************************************		1.06	0.90
Incremental Delay, d2		5.8			0.1		133.5	2.0			15.8	3.9
Delay (s)	200000000000000000000000000000000000000	33.4			21.8		177.0	12.5			58.9	23.9
Level of Service		С			C		F	В			Е	C
Approach Delay (s)		33.4			21.8			27.1				24.8
Approach LOS		С			С			С				С
Intersection Summary												
HCM Average Control D)elav		26.5	F	ICM Lev	el of Se	ervice		С			
HCM Volume to Capaci			0.87	•								
Actuated Cycle Length (90.0	S	Sum of Id	ost time	(s)		12.0			
Intersection Capacity Ut			81.6%		CU Leve				D			
Analysis Period (min)			15									
c Critical Lane Group												

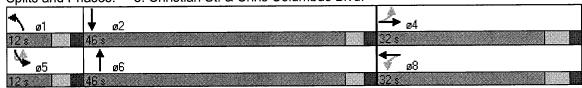
Movement	SBR
Land Configurations	
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	000
Volume (vph)	328
Peak-hour factor, PHF	0.97 338
Adj. Flow (vph) RTOR Reduction (vph)	0
Lane Group Flow (vph)	
Heavy Vehicles (%)	1%
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	

Intersection Summary	

	•		\rightarrow	•	*	*	4	†	<i>*</i>	L	/	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations		44			4		ሻ	ተ ተጉ			'n	ተተኩ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	130		0		90	
Storage Lanes	0		0	0		0	1		0		1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	50
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	9	15	
Right Turn on Red			Yes			Yes			Yes			
Link Speed (mph)		30			30			30				30
Link Distance (ft)		792			277			631				1367
Travel Time (s)		18.0			6.3	_		14.3		-	4.0	31.1
Volume (vph)	157	2	142	13	2	2	172	1699	9	5	16	1714
Peak Hour Factor	0.82	0.25	0.89	0.60	0.50	0.50	0.87	0.84	0.56	0.62	0.31	0.95
Heavy Vehicles (%)	2%	0%	0%	2%	0%	0%	0%	2%	0%	0%	0%	1%
Turn Type	Perm			Perm			Prot	_	(custom	Prot	0
Protected Phases		4		<u>.</u>	8		1	6		-	5	2
Permitted Phases	4			8			4	^		5	_	0
Detector Phases	4	4		8	8		1	6		5	5	2
Minimum Initial (s)	26.0	26.0		26.0	26.0		7.0	41.0		7.0	7.0	41.0
Minimum Split (s)	32.0	32.0	~ ^	32.0	32.0	~ ^	12.0	46.0	0.0	12.0 12.0	12.0 12.0	46.0 46.0
Total Split (s)	32.0	32.0	0.0	32.0	32.0	0.0	12.0	46.0	0.0			
Total Split (%)		35.6%	0.0%		35.6%	0.0%	13.3%		0.0%		13.3%	
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lead/Lag							Lead	Lag		Lead	Lead	Lag
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	Yes
Recall Mode	None	None		None	None		None	C-Min		None	None	C-Min

Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 88.1 (98%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 3: Christian St. & Chris Columbus Blvd.

	onn	
Lane Group	SBR	
体作 Configurations	4000	
Ideal Flow (vphpl)	1900	
Storage Length (ft)	0	
Storage Lanes	0	
Total Lost Time (s)	4.0	
Leading Detector (ft)		
Trailing Detector (ft)	9	
Turning Speed (mph)	Yes	
Right Turn on Red Link Speed (mph)	162	
Link Distance (ft)		
Travel Time (s)		
Volume (vph)	328	
Peak Hour Factor	0.97	
Heavy Vehicles (%)	1%	
Turn Type	170	
Protected Phases		
Permitted Phases		
Detector Phases		
Minimum Initial (s)		
Minimum Split (s)		
Total Split (s)	0.0	
Total Split (%)	0.0%	
Yellow Time (s)		
All-Red Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode		
Intersection Summary		
microcolor Summery		

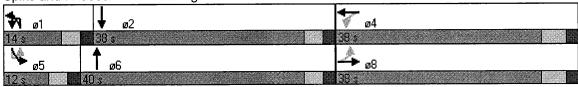
	۶	-+	•	•	◄	•	₹î	1	†	<i>></i>	L	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ኻ	^			44			Ä	ተተጉ			W.
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	13	12	12	16	12	12	12	12	12	12	10
Total Lost time (s)	4.0	4.0			4.0			4.0	4.0			4.0
Lane Util. Factor	1.00	1.00			1.00			1.00	0.91			1.00
Frt	1.00	1.00			0.95			1.00	1.00			1.00
Flt Protected	0.95	1.00			0.99			0.95	1.00	***************************************		0.95
Satd. Flow (prot)	1752	1925			2019			1770	5081			1652
Flt Permitted	0.74	1.00			0.96			0.95	1.00	····		0.55
Satd. Flow (perm)	1358	1925			1965			1770	5081			953
Volume (vph)	516	4	0	4	4	5	2	326	1355	3	6	0
Peak-hour factor, PHF	0.96	0.25	0.92	0.50	0.33	0.42	0.91	0.91	0.85	0.38	0.75	0.92
Adj. Flow (vph)	538	16	0	8	12	12	2	358	1594	8	8	0
RTOR Reduction (vph)	0	0	0	0	7	0	0	0	1	0	0	0
Lane Group Flow (vph)	538	16	0	0	25	0	0	360	1601	0	0	8
Heavy Vehicles (%)	3%	2%	2%	0%	0%	0%	2%	2%	2%	2%	2%	2%
Turn Type	Perm			Perm			Prot	Prot		Ci	ustom	Prot
Protected Phases		8			4		1	1	6			5
Permitted Phases	8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4							5	
Actuated Green, G (s)	32.0	32.0			32.0			9.0	35.7			6.3
Effective Green, g (s)	34.0	34.0			34.0			10.0	36.7			7.3
Actuated g/C Ratio	0.38	0.38			0.38			0.11	0.41			0.08
Clearance Time (s)	6.0	6.0			6.0			5.0	5.0			5.0
Vehicle Extension (s)	3.0	3.0			3.0			3.0	3.0			3.0
Lane Grp Cap (vph)	513	727			742			197	2072			77
v/s Ratio Prot		0.01						c0.20	c0.32			
v/s Ratio Perm	c0.40				0.01							0.01
v/c Ratio	1.05	0.02			0.03			1.83	0.77			0.10
Uniform Delay, d1	28.0	17.6			17.6			40.0	23.0			38.3
Progression Factor	1.00	1.00			1.00			0,90	0.74			1.11
Incremental Delay, d2	53.1	0.0			0.0			388.9	2.5			0.3
Delay (s)	81.1	17.6			17.7			425.1	19.6			42.7
Level of Service	F	В			В			F	В			D
Approach Delay (s)		79.3			17.7				94.0			
Approach LOS		Ε			В				F			
Intersection Summary												
HCM Average Control D	Delay		70.4	Н	CM Lev	el of Se	rvice		Е			
HCM Volume to Capaci	ty ratio		1.17									
Actuated Cycle Length	(s)		90.0			ost time (16.0			
Intersection Capacity U	tilization	1	00.7%	IC	CU Leve	of Serv	/ice		G			
Analysis Period (min)			15			***************************************						
 Critical Lane Group 												

	*	
Movement	SBT	SBR
Lane Configurations	ተ ተጉ	
Ideal Flow (vphpl)	1900	1900
Lane Width	13	12
Total Lost time (s)	4.0	
Lane Util. Factor	0.91	
Frt	0.96	
Flt Protected	1.00	
Satd. Flow (prot)	5067	
Flt Permitted	1.00	
Satd. Flow (perm)	5067	
Volume (vph)	1425	437
Peak-hour factor, PHF	0.92	0.90
Adj. Flow (vph)	1549	486
RTOR Reduction (vph)	63	
Lane Group Flow (vph)	1972	0
Heavy Vehicles (%)	2%	2%
Turn Type	•	
Protected Phases	2	
Permitted Phases	00.0	
Actuated Green, G (s)	33.0	
Effective Green, g (s)	34.0	
Actuated g/C Ratio	0.38	
Clearance Time (s)	5.0 3.0	
Vehicle Extension (s)		
Lane Grp Cap (vph)	1914	
v/s Ratio Prot	c0.39	
v/s Ratio Perm v/c Ratio	1.03	
Uniform Delay, d1	28.0	
Progression Factor	0.83	
Incremental Delay, d2	22.9	
Delay (s)	46.3	
Level of Service	40.3 D	
Approach Delay (s)	46.3	
Approach LOS	70.0 D	
• •		
Intersection Summary		

	>		\rightarrow	•	←	*	₹I	4	†	*	Ŀ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	Ŋ	1≯			4			ă	ተ ተጉ			ሻ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	13	12	12	16	12	12	12	12	12	12	10
Storage Length (ft)	0		0	0		0		150		0		150
Storage Lanes	1	***************************************	0	0		0	_	1	_	0		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50		50	50
Trailing Detector (ft)	0	0		0	0	_	0	0	0		0	0
Turning Speed (mph)	15		. 9	15		. 9	9	15		9	9	15
Right Turn on Red			Yes			Yes			•	Yes		
Link Speed (mph)		30			30				30			
Link Distance (ft)		259			507				180			
Travel Time (s)		5.9	•		11.5	-	0	200	4.1	2	r	٥
Volume (vph)	516	4	0	4	4	5	2	326	1355	3	6 0.75	0 0.92
Peak Hour Factor	0.96	0.25	0.92	0.50	0.33	0.42	0.91	0.91 2%	0.85 2%	0.38 2 %	0.75 2%	2%
Heavy Vehicles (%)	3%	2%	2%	0%	0%	0%	2%		Z%			
Turn Type	Perm			Perm	4		Prot 1	Prot	6	C	ustom	Prot 5
Protected Phases	0	8		4	4		ı	1	0		5	J
Permitted Phases	8 8	8		4 4	4		1	1	6		5	5
Detector Phases		32.0		32.0	32.0		9.0	9.0	29.0		5.0	5.0
Minimum Initial (s)	32.0 38.0	38.0		38.0	38.0		14.0	14.0	34.0		10.0	10.0
Minimum Split (s) Total Split (s)	38.0	38.0	0.0	38.0	38.0	0.0	14.0	14.0	40.0	0.0	12.0	12.0
	42.2%			42.2%				15.6%			13.3%	
Yellow Time (s)	4.0	4.0	0.070	4.0	4.0	0.070	3.0	3.0	3.0	0.070	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0		2.0	2.0
Lead/Lag	2.0	2.0			2.0		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?							Yes	Yes	Yes		Yes	Yes
Recall Mode	None	None		None	None		None	None	C-Min		Min	Min

Area Type: Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 1.3 (1%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Splits and Phases: 4: Washington Ave & Chris Columbus Blvd.

	•	
Lane Group	SBT	SBR
Lane Configurations	ተቀኁ	
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	13	12
Storage Length (ft)		0
Storage Lanes		0
Total Lost Time (s)	4.0	4.0
Leading Detector (ft)	50	
Trailing Detector (ft)	0	
Turning Speed (mph)		9
Right Turn on Red		Yes
Link Speed (mph)	30	
Link Distance (ft)	631	
Travel Time (s)	14.3	
Volume (vph)	1425	437
Peak Hour Factor	0.92	0.90
Heavy Vehicles (%)	2%	2%
Turn Type		
Protected Phases	2	
Permitted Phases		
Detector Phases	2	
Minimum Initial (s)	29.0	
Minimum Split (s)	34.0	
Total Split (s)	38.0	0.0
Total Split (%)	42.2%	0.0%
Yellow Time (s)	3.0	***************************************
All-Red Time (s)	2.0	
Lead/Lag	Lag	
Lead-Lag Optimize?	Yes	
Recall Mode	C-Min	
Intersection Summary		

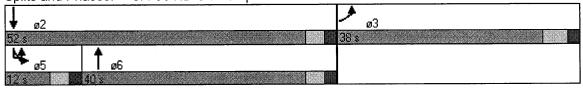
-	۶	→	*	•	←	*	4	†	<i>></i>	L	\	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻሻ		7					ተ ተጉ			ă	ተተተ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0		4.0		***************************************		_	4.0			4.0	4.0
Lane Util. Factor	0.97		1.00					0.91			1.00	0.91
Frt	1.00		0.85					1.00			1.00	1.00
Flt Protected	0.95		1.00					1.00			0.95	1.00
Satd. Flow (prot)	3433		1568					5085	www.com.com		1805	5136
FIt Permitted	0.95		1.00					1.00			0.95	1.00
Satd. Flow (perm)	3433		1568				-	5085		_	1805	5136
Volume (vph)	391	0	211	0	0	0	0	1261	0	24	0	1783
Peak-hour factor, PHF	0.76	0.92	0.72	0.92	0.92	0.92	0.92	0.92	0.92	0.26	0.26	0.96
Adj. Flow (vph)	514	0	293	0	0	0	0	1371	0	92	0	1857
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	514	0	293	0	0	0	0	1371	0	0	92	1857
Heavy Vehicles (%)	2%	2%	3%	2%	2%	_2%	2%	2%	2%_	0%	0%	1%
Turn Type	Prot		Free							Prot	Prot	
Protected Phases	3							6		5	5	2
Permitted Phases			Free									4= 0
Actuated Green, G (s)	32.0		90.0					36.4			5.6	47.0
Effective Green, g (s)	34.0		90.0					37.4			6.6	48.0
Actuated g/C Ratio	0.38		1.00					0.42			0.07	0.53
Clearance Time (s)	6.0							5.0			5.0	5.0
Vehicle Extension (s)	3.0							3.0			3.0	3.0
Lane Grp Cap (vph)	1297		1568					2113			132	2739
v/s Ratio Prot	c0.15							0.27			0.05	c0.36
v/s Ratio Perm			0.19					0.05			0.70	0.00
v/c Ratio	0.40		0.19					0.65			0.70	0.68
Uniform Delay, d1	20.5		0.0					21.0			40.7	15.4
Progression Factor	1.00		1.00					0.45			0.72	1.09
Incremental Delay, d2	0.2		0.3					1.3			8.6 38.1	0.8 17.5
Delay (s)	20.7		0.3					10.7			30.1 D	17.3 B
Level of Service	С	40.0	Α		0.0			10.7			U	18.4
Approach Delay (s)		13.3			0.0			10.7				10.4 B
Approach LOS		В			А			В				ם
Intersection Summary												
HCM Average Control D			14.8	H	ICM Lev	rel of Se	ervice		В			
HCM Volume to Capaci			0.56	***************************************								
Actuated Cycle Length (90.0			ost time			8.0			
Intersection Capacity Ut	ilization		52.3%	Į(CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

c Critical Lane Group

Movement	SBR
L ቁተቀ Configurations	
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Volume (vph)	0
Peak-hour factor, PHF	0.92
Adj. Flow (vph)	
RTOR Reduction (vph)	0
Lane Group Flow (vph)	
Heavy Vehicles (%)	0%
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s) Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

	→	-	7	•	←	•	1	†	~	﴿ا	-	ţ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻሻ		7					ተተ _ጉ			ă	ተተተ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	148		0		110	
Storage Lanes	2		1	0		0	0		0		1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50		50					50		50	50	50
Trailing Detector (ft)	0		0					0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	9	15	
Right Turn on Red			Yes			Yes			Yes			
Link Speed (mph)		30			30			30				30
Link Distance (ft)		596			153		····	487	****			641
Travel Time (s)		13.5			3.5			11.1				14.6
Volume (vph)	391	0	211	0	0	0	0	1261	0	24	0	1783
Peak Hour Factor	0.76	0.92	0.72	0.92	0.92	0.92	0.92	0.92	0.92	0.26	0.26	0.96
Heavy Vehicles (%)	2%	2%	3%	2%	2%	2%	2%	2%	2%	0%	0%	1%
Turn Type	Prot		Free							Prot	Prot	_
Protected Phases	3							6		5	5	2
Permitted Phases			Free					_		_	_	
Detector Phases	3		*************					6		_ 5	5	_ 2
Minimum Initial (s)	32.0							35.0		7.0	7.0	35.0
Minimum Split (s)	38.0							40.0		12.0	12.0	52.0
Total Split (s)	38.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	12.0	12.0	52.0
Total Split (%)	42.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	44.4%	0.0%	13.3%		57.8%
Yellow Time (s)	4.0							3.0		3.0	3.0	3.0
All-Red Time (s)	2.0							2.0		2.0	2.0	2.0
Lead/Lag								Lag		Lead	Lead	
Lead-Lag Optimize?								Yes		Yes	Yes	~ 1.F:
Recall Mode	None							C-Min		None	None	C-Min

Area Type: Other Cycle Length: 90


Actuated Cycle Length: 90

Offset: 49.9 (55%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 5: I-95 NB Off Ramp & Chris Columbus Blvd.

Lacator	SBR	
Lane Group Lane Group Lane Group	JDN	
Ideal Flow (vphpl)	1900	
Storage Length (ft)	0	
Storage Lanes	0	
Total Lost Time (s)	4.0	
Leading Detector (ft)		
Trailing Detector (ft)		
Turning Speed (mph)	9	
Right Turn on Red	Yes	
Link Speed (mph)		
Link Distance (ft) Travel Time (s)		
Volume (vph)	0	
Peak Hour Factor	0.92	
Heavy Vehicles (%)	0%	
Turn Type		
Protected Phases		
Permitted Phases		
Detector Phases		
Minimum Initial (s)		
Minimum Split (s)	0.0	
Total Split (s) Total Split (%)	0.0%	
Yellow Time (s)	0.070	
All-Red Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Recall Mode		
Intersection Summary		

5								•			1.4	
	≯	-	\rightarrow	1	-	•	₹I	1	Ť	*	L ≱	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	75	4			4			Ä	ተተ _ጉ			ă
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	13	12	12	13	12	10	10	11	12	10	10
Total Lost time (s)	4.0	4.0			4.0			4.0	4.0			4.0
Lane Util. Factor	1.00	1.00			1.00			1.00	0.91			1.00
Frt	1.00	0.87			0.96			1.00	1.00			1.00
Flt Protected	0.95	1.00			0.99			0.95	1.00			0.95
Satd. Flow (prot)	1888	1707			1845			1636	4896			1652
FIt Permitted	0.74	1.00			0.91			0.95	1.00			0.95
Satd. Flow (perm)	1463	1707			1706			1636	4896			1652
Volume (vph)	189	21	158	15	17	17	18	121	1057	20	2	21
Peak-hour factor, PHF	0.87	0.83	1.00	0.70	0.50	0.65	0.92	0.92	0.80	0.47	0.69	0.69
Adj. Flow (vph)	217	25	158	21	34	26	20	132	1321	43	3	30
RTOR Reduction (vph)	0	86	0	0	16	0	0	0	3	0	0	0
Lane Group Flow (vph)	217	97	0	0	65	0	0	152	1361	0	0	33
Heavy Vehicles (%)	2%	1%	0%	2%	0%	0%	3%	3%	2%	0%	2%	2%
Turn Type	Perm			Perm			Prot	Prot			Prot	Prot
Protected Phases		3			7		1	1	6		5	5
Permitted Phases	3			7			***************************************					
Actuated Green, G (s)	32.0	32.0			32.0			7.0	37.8			4.2
Effective Green, g (s)	34.0	34.0			34.0			8.0	38.8			5.2
Actuated g/C Ratio	0.38	0.38			0.38			0.09	0.43			0.06
Clearance Time (s)	6.0	6.0			6.0			5.0	5.0			5.0
Vehicle Extension (s)	3.0	3.0			3.0			3.0	3.0			3.0
Lane Grp Cap (vph)	553	645			644			145	2111		****	95
v/s Ratio Prot		0.06						c0.09	c0.28			0.02
v/s Ratio Perm	c0.15				0.04			***********************				
v/c Ratio	0.39	0.15			0.10			1.05	0.64			0.35
Uniform Delay, d1	20.5	18.5		***************************************	18.1			41.0	20.2			40.8
Progression Factor	1.00	1.00			1.00			1.37	0.75			1.46
Incremental Delay, d2	0.5	0.1			0.1			84.3	1.4			1.8
Delay (s)	20.9	18.6			18.2			140.5	16.4			61.2
Level of Service	С	В			В			F	В			E
Approach Delay (s)		19.8			18.2				28.9			
Approach LOS		В			В				С			
Intersection Summary												
HCM Average Control D	Delay		54.5	H	ICM Lev	el of Se	rvice		D			
HCM Volume to Capaci	ty ratio		0.84									
Actuated Cycle Length	(s)		90.0		Sum of Ic	A. CO. ST. ST. ST. ST. ST. ST. ST. ST. ST. ST			16.0			
Intersection Capacity U	tilization		83.4%	į(CU Leve	l of Sen	vice		E			
Analysis Period (min)			15				***************************************					
c Critical Lane Group												

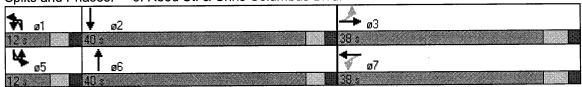
	ODT	onn.
Movement	SBT	SBR
Land Configurations	ተ ቀጉ	4000
Ideal Flow (vphpl)	1900 10	1900 12
Lane Width	4.0	12
Total Lost time (s) Lane Util, Factor	0.91	
Frt	0.98	
Fit Protected	1.00	
Satd. Flow (prot)	4657	
Fit Permitted	1.00	
Satd. Flow (perm)	4657	
Volume (vph)	1762	226
Peak-hour factor, PHF	0.94	0.78
Adj. Flow (vph)	1874	290
RTOR Reduction (vph)	23	
Lane Group Flow (vph)	2141	0
Heavy Vehicles (%)	2%	1%
Turn Type		
Protected Phases	2	
Permitted Phases		
Actuated Green, G (s)	35.0	
Effective Green, g (s)	36.0	
Actuated g/C Ratio	0.40	
Clearance Time (s)	5.0	
Vehicle Extension (s)	3.0	
Lane Grp Cap (vph)	1863	
v/s Ratio Prot	c0.46	
v/s Ratio Perm		
v/c Ratio	1.15	
Uniform Delay, d1	27.0	
Progression Factor	0.27	
Incremental Delay, d2	72.7	
Delay (s)	80.1	
Level of Service	F	
Approach LOS	79.8	
Approach LOS	E	
Intersection Summary		

	۶	-	\rightarrow	•	-	•	∳ 1	4	†	*	L	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	*5	1→			4			ă	ተ ቀጉ			ă
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	13	12	12	13	12	10	10	11	12	10	10
Storage Length (ft)	0		0	0		0		100		0		150
Storage Lanes	1		0	0	******	0		1	_	0		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50		50	50
Trailing Detector (ft)	0	0		0	0	-	0	0	0		0	0
Turning Speed (mph)	15		9	15		9	9	15		. 9	9	15
Right Turn on Red			Yes			Yes			•	Yes		
Link Speed (mph)		30			30				30			
Link Distance (ft)		625			893				453			
Travel Time (s)		14.2			20.3	47	40	404	10.3	20	2	21
Volume (vph)	189	21	158	15	17	17	18	121	1057 0.80	20 0.47	0.69	0.69
Peak Hour Factor	0.87	0.83	1.00	0.70	0.50	0.65 0%	0.92 3 %	0.92 3 %	2%	0.47	2%	2%
Heavy Vehicles (%)	2%	1%	0%	2%	0%	U%		ے Prot	Z70	U70	∠ /₀ Prot	Prot
Turn Type	Perm			Perm	7		Prot	P101	6		F10t	5
Protected Phases	0	3		7	7		1	ı	υ		J	J
Permitted Phases	3	3		7 7	7		1	1	6		5	5
Detector Phases	3			32.0	7 32.0		7.0	7.0	35.0		7.0	7.0
Minimum Initial (s)	32.0 38.0	32.0 38.0		38.0	38.0		12.0	12.0	40.0		12.0	12.0
Minimum Split (s)	38.0	38.0	0.0	38.0	38.0	0.0	12.0	12.0	40.0	0.0	12.0	12.0
Total Split (s)	42.2%			42.2%			13.3%		44.4%		13.3%	
Total Split (%) Yellow Time (s)	42.270	4.0	U.U 70	4.0	4.0	0.070	3.0	3.0	3.0	0.070	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0		2.0	2.0
Lead/Lag	2.0	2.0		2.0	2.0		Lead	Lead	Lag		Lead	Lead
Lead-Lag Optimize?							Yes	Yes	Yes		Yes	Yes
Recall Mode	None	None		None	None		None		C-Max		None	None
I Coall Mode	140116	140110		. 10.10	, 10110				,			

Area Type:

Other

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 47.2 (52%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Splits and Phases: 6: Reed St. & Chris Columbus Blvd.

		000
Lane Group	SBT	SBR
Lan Configurations	<u>ተተጉ</u>	1000
Ideal Flow (vphpl)	1900	1900
Lane Width (ft)	10	12
Storage Length (ft)		0
Storage Lanes	<u>_</u>	0
Total Lost Time (s)	4.0	4.0
Leading Detector (ft)	50	
Trailing Detector (ft)	0	
Turning Speed (mph)		9
Right Turn on Red		Yes
Link Speed (mph)	30	
Link Distance (ft)	487	
Travel Time (s)	11.1	
Volume (vph)	1762	226
Peak Hour Factor	0.94	0.78
Heavy Vehicles (%)	2%	1%
Turn Type		
Protected Phases	2	
Permitted Phases		
Detector Phases	2	
Minimum Initial (s)	35.0	
Minimum Split (s)	40.0	
Total Split (s)	40.0	0.0
Total Split (%)	44.4%	0.0%
Yellow Time (s)	3.0	
All-Red Time (s)	2.0	
Lead/Lag	Lag	
Lead-Lag Optimize?	Yes	
Recall Mode	C-Max	
Intersection Summary		
and section out illiary		

	۶		•	•	←	•	₹î	•	†	<i>></i>	>	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations									ተተቡ		ሻ	ተተጉ
Sign Control		Stop			Stop				Free			Free
Grade		0%			0%				0%			0%
Volume (veh/h)	0	0	0	0	0	0	79	109	1215	0	1	1951
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.87	0.87	0.85	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	0	0	0	125	1429	0	1	2121
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s) Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)									450			453
pX, platoon unblocked	0.69	0.69	0.63	0.69	0.69	0.87	0.00	0.63			0.87	
vC, conflicting volume	2850	3803	707	2389	3803	476	0	2121			1429	
vC1, stage 1 conf vol												
vC2, stage 2 conf vol							-				4400	
vCu, unblocked vol	1947	3329	0	1279	3329	106	0	1595			1199	
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	0.0	4.1			4.1	
tC, 2 stage (s)	3.5	4.0	3.3	3.5	4.0	3.3	0.0	2.2			2.2	
tF (s) p0 queue free %	ა.ი 100	100	ა.ა 100	100	100	100	0.0	ے۔ <u>ہے</u> 51			100	
cM capacity (veh/h)	160	3	679	52	3	809	0	255			504	
Direction, Lane #	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	SB 4					
Volume Total	411	572	572	1	848	848	424					
Volume Left	125	0	0	1	0	0	0 0					
Volume Right	0	1700	0 1700	0 504	1700	1700	1700					
cSH Volume to Capacity	255 0.49	1700 0.34	0.34	0.00	0.50	0.50	0.25					
Queue Length 95th (ft)	63	0.5 4	0.34	0.00	0.50	0.50	0.23					
Control Delay (s)	23.0	0.0	0.0	12.2	0.0	0.0	0.0					
Lane LOS	20.0 C	0.0	0.0	В	V.0	0.0	· · · · ·					
Approach Delay (s)	6.1			0.0								
Approach LOS												
Intersection Summans												
Intersection Summary			2.6									
Average Delay Intersection Capacity Ut	ilization		71.7%	17	CU Leve	al of Ser	vice		С			
Analysis Period (min)	mzalivii		11.176	11	OO LOVE	, UI UUI	1.00		· ·			
Analysis i Gliou (IIIII)			10									

Movement	SBR
Lange Configurations	JULY
Sign Control	
Grade	
Volume (veh/h)	
Peak Hour Factor	0.92
Hourly flow rate (vph)	0
Pedestrians	
Lane Width (ft)	
Walking Speed (ft/s)	
Percent Blockage	
Right turn flare (veh)	
Median type Median storage veh)	
Upstream signal (ft)	
pX, platoon unblocked	
vC, conflicting volume	
vC1, stage 1 conf vol	
vC2, stage 2 conf vol	
vCu, unblocked vol	
tC, single (s)	
tC, 2 stage (s)	
tF (s)	
p0 queue free %	
cM capacity (veh/h)	
Direction, Lane #	

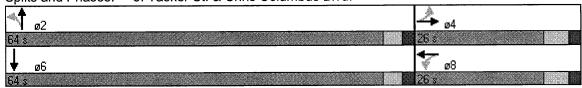
	۶	-	*	•	4-	•	₽ſ	1	†	/	/	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations						VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV			ተተጉ		ሻ	ተትጉ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Turning Speed (mph)	15		9	15		9	9	15	~~	9	15	00
Link Speed (mph)		30			30				30			30
Link Distance (ft)		611			184				450 10.2			453 10.3
Travel Time (s)	^	13.9 0	0	0	4.2 0	0	79	109	1215	0	1	1951
Volume (vph) Peak Hour Factor	0 0.92	0.92	0.92	0.92	0.92	0.92	0.87	0.87	0.85	0.92	0.92	0.92
Sign Control	0.32	Stop	0.32	0.32	Stop	0.52	0.01	0.01	Free	U.U_	0.04	Free
		Otop			0.00							
Intersection Summary												
J	Other											
Control Type: Unsignali	zed											
	,											
	4											
	SBR				-							
Lane Group	JDN											
L 李 青春 Configurations Ideal Flow (vphpl)	1900											
Turning Speed (mph)	9											
Link Speed (mph)	3											

Lane Group	SBR
L ‡ ↑♠ Configurations	
Ideal Flow (vphpl)	1900
Turning Speed (mph)	9
Link Speed (mph)	
Link Distance (ft)	
Travel Time (s)	
Volume (vph)	0
Peak Hour Factor	0.92
Sign Control	

	۶	→	*	•	+	4	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43-			44			ተተ _ጉ			ተተ _ጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0			4.0	***************************************		4.0			4.0	
Lane Util, Factor		1.00			1.00			0.91			0.91	
Frt	***************************************	0.94			0.97			1.00			0.99	
Flt Protected		0.99			0.99			1.00			1.00	
Satd. Flow (prot)		1734		***************************************	1763			5079			5101	
Fit Permitted		0.75			0.87			0.92			1.00	
Satd. Flow (perm)		1314			1536			4664			5101	
Volume (vph)	91	94	120	18	100	47	6	1267	7	0	1949	85
Peak-hour factor, PHF	0.91	0.83	0.78	0.61	0.77	0.94	0.75	0.88	0.58	0.92	0.94	0.82
Adj. Flow (vph)	100	113	154	30	130	50	8	1440	12	0	2073	104
RTOR Reduction (vph)	0	12	0	0	13	0	0	1	0	0	6	0
Lane Group Flow (vph)	0	355	0	0	197	0	0	1459	0	0	2171	0
Heavy Vehicles (%)	1%	0%	4%	2%	3%	6%	1%	2%	0%	0%	1%	0%
Turn Type	Perm			Perm			Perm					
Protected Phases		4	***************************************		8	***************************************		2			6	
Permitted Phases	4			8			2					
Actuated Green, G (s)	227429 277490 4450 4450 4450 4450 4450	20.0			20.0			59.0			59.0	
Effective Green, g (s)		22.0			22.0			60.0			60.0	
Actuated g/C Ratio		0.24			0.24			0.67			0.67	
Clearance Time (s)		6.0			6.0			5.0			5.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		321			375			3109			3401	
v/s Ratio Prot											c0.43	
v/s Ratio Perm		c0.27			0.13			0.31				
v/c Ratio		1.11			0.53			0.47			0.64	
Uniform Delay, d1		34.0			29.5			7.3			8.7	
Progression Factor		1.00			1.00			1.00			1.79	
Incremental Delay, d2		81.7			1.3			0.5			0.1	
Delay (s)		115.7			30.8			7.8			15.7	
Level of Service		F			С			Α			В	
Approach Delay (s)		115.7			30.8			7.8			15.7	
Approach LOS		F			C			А			В	
Intersection Summary												
HCM Average Control D	Nolov		22.4	L	ICMLA	el of Se	mrice		С			
HCM Volume to Capaci			0.76	ı	ICIVI LC	/C/ U/ UC	.i vicc					
Actuated Cycle Length			90.0	Ç	tum of le	ost time	/e\		8,0			
Intersection Capacity Ut			92.1%			el of Ser			F			
Analysis Period (min)	Lation		15	IV.	JO 2010	, or oor	.,,,,,		•			
c Critical Lane Group			10									
C Childai Lane Group												

	•	→	•	•	+	•	1	†	<i>></i>	/		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			ተ ቀጉ			ተ ተጮ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50			50	
Trailing Detector (ft)	0	0		0	0	*******************************	0	0			0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Right Turn on Red	*************		Yes			Yes		2	Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		600			820			229			450	
Travel Time (s)		13.6			18.6		_	5.2	_		10.2	0.5
Volume (vph)	91	94	120	18	100	47	6	1267	7	0	1949	85
Peak Hour Factor	0.91	0.83	0.78	0.61	0.77	0.94	0.75	0.88	0.58	0.92	0.94	0.82
Heavy Vehicles (%)	_ 1%	0%	4%	2%	3%	6%	1%	2%	0%	0%	1%	0%
Turn Type	Perm			Perm	•		Perm	^			^	
Protected Phases		4		_	8		0	2			6	
Permitted Phases	4			8	0		2	^			C	
Detector Phases	4	4		8	8		2 59.0	2 59.0			6 59.0	
Minimum Initial (s)	20.0	20.0		20.0	20.0 26.0		64.0	64.0			64.0	
Minimum Split (s)	26.0	26.0	0.0	26.0 26.0	26.0	0.0	64.0	64.0	0.0	0.0	64.0	0.0
Total Split (s)	26.0	26.0	0.0	28.9%			71.1%		0.0%		71.1%	0.0%
Total Split (%)	28.9% 4.0	4.0	0.0%	4.0	4.0	0.0%	3.0	3.0	0.0 /0	0.0 /6	3.0	0.076
Yellow Time (s)	2.0	2.0		2.0	2.0		2.0	2.0			2.0	
All-Red Time (s) Lead/Lag	2.0	2.0		2.0	2.0		2.0	2.0			2.0	
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Min	C-Min			C-Min	
Intersection Summary												
Area Type:	Other											

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 24 (27%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 8: Tasker St. & Chris Columbus Blvd.

	≯	\rightarrow	1	†	↓	4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR					
Lane Configurations				ተተተ	ተተተ	7					
Sign Control	Stop			Free	Free						
Grade	0%	_	•	0%	0%	464					
Volume (veh/h)	0	0 0.92	0 0.92	1280 0.92	1623 0.92	464 0.92					
Peak Hour Factor Hourly flow rate (vph)	0.92 0	0.92	0.92	1391	1764	504					
Pedestrians	U	V	U	1001	1104	004					
Lane Width (ft)											
Walking Speed (ft/s)											***************************************
Percent Blockage											
Right turn flare (veh)											
Median type	None										
Median storage veh)					229						
Upstream signal (ft) pX, platoon unblocked	0.78	0.78	0.78		229						
vC, conflicting volume	2228	588	2268								
vC1, stage 1 conf vol	LLLO	555	0								************
vC2, stage 2 conf vol			0								
vCu, unblocked vol	2010	0	2062								
tC, single (s)	6.8	6.9	4.1								
tC, 2 stage (s)			3.1								
tF (s)	3.5	3.3	2.2 100								
p0 queue free % cM capacity (veh/h)	100 40	100 84 5	622								
•				65 <i>i</i>	00.0	00.0	65.4				
Direction, Lane #	NB 1	NB 2	NB 3	SB 1 588	SB 2	SB 3 588	SB 4 504				
Volume Total Volume Left	464 0	464 0	464 0	ეტტ 0	588 0	0	0				
Volume Right	0	0	0	0	0	0	504				
cSH	1700	1700	1700	1700	1700	1700	1700				
Volume to Capacity	0.27	0.27	0.27	0.35	0.35	0.35	0.30				
Queue Length 95th (ft)	0	0	0	0	0	0	0		 		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Lane LOS											
Approach Delay (s)	0.0			0.0							
Approach LOS								*******************************			
Intersection Summary											
Average Delay			0.0	1.7	NIII	-1 -6 O			۸		
Intersection Capacity Ut	ilization		34.7% 15	10	JU Leve	el of Ser	VICE		Α		
Analysis Period (min)			15								

	•	•	4	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations				ተተተ	ተተተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	0			100
Storage Lanes	0	0	0			1
Turning Speed (mph)	15	9	15	~~~		9
Link Speed (mph)	30			30	30	
Link Distance (ft)	209			126	229	
Travel Time (s)	4.8			2.9	5.2	
Volume (vph)	0	0	0	1280	1623	464
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type:	Other					
Control Type: Unsigna	ılized					

	ၨ	-	•	•	←	•	4	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1→			स				
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	0	0	0	0	449	15	74	680	0	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	488	16	80	739	0	0	0	0
Direction, Lane#	WB 1	NB 1										
Volume Total (vph)	504	820										
Volume Left (vph)	0	80										
Volume Right (vph)	16	0						a-na-cassassassas-a	***************************************		****	
Hadj (s)	0.01	0.05										
Departure Headway (s)	5.8	5.5										
Degree Utilization, x	0.81	1.26										
Capacity (veh/h)	615	661										
Control Delay (s)	28.8	148.0										
Approach Delay (s)	28.8	148.0										
Approach LOS	D	F										
Intersection Summary												
Delay			102.6									
HCM Level of Service			F							***************************************		
Intersection Capacity Uti	lization		71.1%	IC	CU Leve	el of Sen	vice		С			
Analysis Period (min)			15									

	•	→	•	•	←	*	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1→			4	_			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Turning Speed (mph)	15		9	15		9	15		9	15		9
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		44			209			150			142	
Travel Time (s)		1.0			4.8			3.4			3.2	
Volume (vph)	0	0	0	0	449	15	74	680	0	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type:	Other				_							

Control Type: Unsignalized